photoСовместное общество с ограниченной ответственностью «Нобель Групп» ведёт переговоры с немецкой компанией ASiRAL Industriereiniger GmbH о совместных действиях, целью которых будет вывод на рынок Республики Беларусь промышленных чистящих средств, изготавливаемых этой компанией. Обсуждается возможность изготовления некоторых средств компании ASiRAL на производственной площадке СООО «Нобель Групп».

  1. При разработке процедуры очистки следует учитывать низкую стойкость хромо-никелевых сталей («нержавейка») при воздействии на них гипохлоритов и хлоридов, особенно если температура растворов выше 30 °С, а также учитывать, что хлорсодержащие очистители образуют адсорбируемые органические галогенные соединения.
  2. Учитывать, что при контакте NaОН c CO2 образуется нерастворимый гидрокарбонат натрия NaHCO3 – следует вытеснять CO2 перед очисткой с использованием щелочных растворов.
  3. Резиновые шланги очищаются только с использованием слабощелочных средств. Окисляющие кислоты (например, азотная) и ионы меди ускоряют старение резины, поэтому следует не допускать одновременной очистки трубопроводов из меди и медных сплавов или с арматурой из меди и медных сплавов с резиновыми шлангами.
  4. Стандартная схема очистки CIP для производства пива.
    • Промывка водой 5 мин;
    • Мойка щелочным моющим раствором [FORZA 30-20: (1-2) %] в течении (30-50) мин (не рекомендуется использовать растворы с количеством щелочи превышающим (2-3) % по NaOH);
    • Промежуточное ополаскивание 5 мин;
    • Мойка кислотным моющим раствором [FORCID: (1-2) %] в течении 15 мин;
    • Промежуточное ополаскивание 3 мин;
    • Дезинфекция – 20 мин (НУК или ЧАС);
    • Ополаскивание 5 мин.
  5. Пенная очистка наружных поверхностей FORZA DEZ – 2 %, экспозиция — 15 мин. Раствор подавать пеногенератором под давлением не менее 3 бар, лучше (12-25) бар. Оптимальная толщина пенного слоя – (2-3) мм.

  • 1673 – открытие Левенгуком одноклеточных микроорганизмов
  • 1940Хукалайкианом (Heukelekian) и Хеллером (Heller) описан т.н. «bottle effect» — рост бактерий проходит быстрее, если они закреплены на поверхности
  • 1943Зобелл (Zobell) предположил, что адгезия бактерий к поверхности осуществляется двухступенчатом процессе, имеющим обратимую и необратимую фазы.
  • конец 1960-х – начало 1970-х – сразу несколько исследователей устанавливает распространенность бактериальных биопленок. Было показано, что биопленки состоят из множества различных микроорганизмов и что материал матрицы (EPS) в основном состоит из полисахаридов.
  • 1973Караклис (Characklis) установил, что биопленки устойчивы к антимикробному эффекту хлора
  • 1978Костертоном (Costerton) выдвинута гипотеза механизма биологического выигрыша микроорганизмов от создания биоплёнок
  • 1979 — исследования Костертона (Costerton) и Гийзи (Geesey) показали, что гликокаликс является ионообменной матрицей, которая улавливает питательные вещества и затем транспортируют их в клетки
  • 1981 — исследования Костертона (Costerton) и др. показали, что гликокаликс являвляется гидратированной полисахаридной полианионной матрицей прикрепленной к липосахаридным компонентам клеточной оболочки бактерий
  • 1995 – создана концепция “biofilm model”. Эта модель описывает образование микроорганизмами микроколоний окруженных большим количеством экзополисахаридов. Между микроколониями есть заполненные водой каналы, которые обеспечивают приток питательных веществ и отток продуктов жизнедеятельности.
  • 1998 – значительный успех в понимании развития и поведения биопленок, на основе исследований, которые сочетали молекулярно-генетический подход с конфокальной лазерной сканирующей микроскопией (CLSM).

Надуксусная кислота (далее – НУК) была запатентована в 1950 году как средство для обработки предназначенных для переработки фруктов и овощей, с целью уменьшить их порчу бактериями и грибами (Greenspan and Margulies, 1950). С тех пор НУК используется для дезинфекции рецикруляционной воды в системах мойки свежих продуктов (Lokkesmoe и Olson, 1995). Сравнительно недавно были проведены исследования НУК в качестве альтернативы хлору и как дезинфицирующего средства для обработки мяса и птицы.

Основная область применения надуксусной кислоты в пищевой промышленности – это дезинфекция поверхностей, контактирующих с пищевыми продуктами и дезинфекция фруктов, овощей, мяса и яиц (Evans, 2000). НУК также используется для дезинфекции рециркуляционной лотковой воды (Lokkesmoe и Olson, 1993), удаления отложений, устранения запахов и для очистки от биоплёнок поверхностей, контактирующих с пищевыми продуктами (Block, 1991; Mosteller and Bishop. 1993; Marriot, 1999; Fatemi and Frank 1999), для модификации пищевого крахмала путем мягкого окисления и в качестве отбеливателя (Food Chemicals Codex, 1996).

Международная некоммерческая исследовательская и правозащитная организация Institute for Agriculture and Trade Policy в результате тестирования образцов кукурузного сиропа обнаружила, что 9 из 20 протестированных, загрязнены ртутью. Также было установлено, что более 30 % из  55  исследованных пищевых продуктов и прохладительных напитков, в том числе употребляемых детьми, содержали количества ртути превышающие допустимые нормативы. Продукты были контаминированы металлической ртутью или её органическими и неорганическими соединениями.

Каким путем ртуть попадает в продукты питания? Одним из значимых факторов, приводящих к контаминации этим опасным для здоровья химическим веществом, является использование на пищевых производствах для очистки оборудования и технологических трубопроводов, каустической соды с ненормированным содержанием тяжелых металлов и ртути. Предприятия в погоне за экономией безответственно покупают дешевый загрязненный каустик, которых не предназначен для использования в процессах очистки поверхностей, соприкасающихся с пищевой продукцией.

Читать далее

Общий ущерб от порчи пищевых продуктов чрезвычайно велик. В результате микробной порчи теряется около четверти мирового производства пищевой продукции (J. of Food Microbiology, 1996, 33, p.1-18), например потери  зерновых и бобовых культур составляют более 10% от их сельскохозяйственного производства, а для незерновых культур, овощей и фруктов достигают 50% (J. of Food Microbiology, 1996, 59, p.876-880). Потери начинаются еще на сельскохозяйственном предприятия и продолжаются по всей производственно-коммерческой цепи:  при хранении, поставке, переработке, в оптовой и розничной торговле и далее у потребителя.

Основными контаминантами при производстве мороженного являются остатки сырья, используемого для производства продукции.

В первую очередь это молоко, сливки и растительные масла – суммарно до 15 % в составе продукции; СОМО (белки, соли, лактоза) – до 12 %; сахар – до 22 % в составе фруктового льда и до 15 % в составе мороженного; эмульгаторы (0,2-0,5) % и стабилизаторы (моноглицериды, желатин, альгинат – обычно альгинат калия (E402) или кальция (E404), (0,2-0,4) %); ароматизаторы и красители.

Химические и физические загрязнения состоят из минеральных отложений, жиров, углеводородов, протеинов и воды. На поверхностях может накапливаться водный камень, а на нагреваемых поверхностях может происходить денатурация протеинов, которые осаждаются вместе с другими ингредиентами с образованием молочного камня. В таких загрязнениях обычно присутствуют в некотором количестве и фосфаты кальция (Ca3(PO4)2), нерастворимые в воде. Молочный камень является пористым отложением, легко адсорбирующим микроорганизмы.

Читать далее

Весь спектр санитарно-гигиенических мероприятий проводимых на пищевых предприятиях можно разделить на три группы:

  • очистка (мойка) внутренних поверхностей трубопроводов и технологического оборудования,
  • дезинфекция внутренних поверхностей трубопроводов и технологического оборудования,
  • мойка и дезинфекция внешних поверхностей технологического оборудования, стен и напольных покрытий в производственных помещениях.

Показательным индикатором здоровья молочного стада, соблюдения надлежащих условий при дойке и хранении является численность бактерий в сыром молоке. Именно число соматических клеток и бактерий дает нам информацию о микробиологическом качестве молока. В сыром молоке, полученном асептическим способом и от здорового стада численность микроорганизмов может быть менее 1000 КОЕ/куб. см, в тоже время эта величина может составлять и более 10000000 КОЕ/куб. см. Установлено, что основными факторами, влияющими на динамику контаминации молока, является физическая и микробиологическая чистота вымени, сосков и технологического оборудования.

Читать далее