По просьбе одного из клиентов был проведен анализ соответствия антисептического средства условиям технического задания. Ниже приведена аналитическая часть экспертизы.

В. Анализ состава

Спирты являются эффективными противомикробными средствами, наиболее широко используются этиловый спирт, изопропиловый спирт (изопропанол) и н-пропанол,  который считается предпочтительным в EU [1]. Спирты обладают быстрым антимикробным действием широкого спектра против вегетативных бактерий (включая микобактерии), вирусов и грибов, не обладают спороцидным действием, но ингибируют споруляцию и прорастание спор [2]. Из-за отсутствия спороцидной активности спирты не рекомендуются для стерилизации, но широко используются как для дезинфекции твердых поверхностей, так и для антисептики кожи. Многие спиртовые дезинфектанты содержат незначительные количества других биоцидов, которые остаются на коже после испарения спирта, или вспомогательные вещества (включая смягчающие вещества), которые сокращают время испарения спирта и могут значительно повысить эффективность продукта [3]. Считается, что изопропиловый спирт несколько более эффективен против бактерий [4], а этиловый спирт более эффективен против вирусов [5]. Однако следует отметить, что такие эффекты зависят как от концентрации спирта, так и от тестового микроорганизма, например, изопропиловый спирт обладает более высокими липофильными свойствами, чем этиловый спирт, и менее активен против гидрофильных вирусов (например, полиовируса). Как правило, антимикробная активность спиртов значительно и нелинейно снижается в концентрациях ниже 50 %, поэтому оптимальным является содержание спиртов в составе продукта в диапазоне от 60 до 90 %.

Научного консенсуса о специфическом механизме действия спиртов нет, но, исходя из повышенной эффективности спиртов в присутствии воды, считается, что они вызывают повреждение клеточных мембран и быструю денатурацию белков с нарушением метаболизма и последующий лизис клеток [6], что подтверждается сообщениями исследователей о денатурации дегидрогеназы Escherichia coli [7] и увеличенной лаг-фазе Enterobacter aerogenes, предположительно из-за ингибирования метаболизма, необходимого для быстрого деления клеток [8].

Из научной литературы известно, что н-пропиловый спирт более эффективен, чем изопропиловый спирт (nPA — 3.12 % против iPA — 6.25 %), для уничтожения метициллинрезистентного золотистого стафилококка (MSSA) [9].

Соединения четвертичного аммония (ЧАС), являются наиболее эффективными дезинфицирующими активно-действующими веществами из группы КПАВ [10]. ЧАС используют для множества клинических целей (например, для предоперационной дезинфекции неповрежденной кожи, нанесения на слизистые оболочки и дезинфекции некритических поверхностей). Помимо антимикробных свойств, ЧАС также отлично подходят для очистки и дезодорации твердых поверхностей.

Известно, что ЧАС являются мембранно-активными агентами [11],  преимущественно повреждающими цитоплазматическую мембрану бактерий или плазматическую мембрану грибов. Сэлтон [12] предложил следующую последовательность событий с микроорганизмами, подвергнутыми воздействию катионных агентов: (i) адсорбция и проникновение агента в клеточную стенку; (ii) реакция с цитоплазматической мембраной (липидом или белком) с последующей дезорганизацией мембраны; (iii) утечка внутриклеточного низкомолекулярного материала; (iv) деградация белков и нуклеиновых кислот; и (v) лизис стенок, вызванный автолитическими ферментами. Таким образом, у бактерий происходит потеря структурной организации и целостности цитоплазматической мембраны, а также другие повреждающие эффекты для бактериальной клетки [13]. ЧАС споростатичны; они подавляют рост спор (развитие вегетативной клетки из проросшей споры), но не сами процессы прорастания (развитие от покоя до метаболически активного состояния), хотя и по неизвестному механизму [14]. Аналогичным образом, ЧАС не являются микобактерицидными, но обладают микобактериостатическим действием, хотя фактическое воздействие на микобактерии мало изучено [15].

Хотя в некоторых исследованиях отмечено повышение толерантности к ЧАС, доказательств, подтверждающих развитие устойчивости к ЧАС в настоящее время нет [16].  Использование ЧАС конкретного наименования имеет свои преимущества и недостатки для конкретной ситуации, то есть выбор того или иного ЧАС в составе средства определяется для конкретного патогена, и этот фактор имеет решающее значение. 

Полигексаметиленгуанидина гидрохлорид (CAS# 57028-96-3) является дериватом гуанидина, свойства, эффективность и воздействие которого еще не полностью изучены. В соответствии с Директивой по биоцидным продуктам от 16 февраля 1998 года (Directive 98/8/EC), вещество входящее в этот класс веществ (PHMB), на основании трех исследований, проведенных во время обзора досье BPR, было классифицировано как канцероген Carc. cat. 2 + H351 (подозревается как причина рака), категория 3; R40 (ограниченное доказательство канцерогенности). С данным веществом связано ряд инцидентов, в том числе с летальным исходом в Республике Корея в 2006 – 2011 годах (запрещено к применению в Республике Корея в 2011 году) [17] [18]. В мае 2016 года компания Reckitt Benckiser признала, что её продукты, содержащие ПГМГ, вредны [19].  ПГМГ ранее использовался в виде водного раствора (200 — 5000) ppm для дезинфекции кожи и инструментов. С 1 февраля 2013 года Европейская комиссия запретила использование ПГМГ в странах Европейского Союза во всех его ранее разрешенных областях применения. Европейская комиссия запретила размещение на рынке и использование ПГМГ для всех биоцидных целей [20].

Исходя из химического профиля данного соединения можно утверждать, что ПГМГ не является веществом, улучающим состояние кожи, использование его для таких целей неизвестно. Европейское химическое агентство (ECHA) своем сайте сообщает: «causes skin irritation, may cause an allergic skin reaction and may cause respiratory irritatio» (вызывает раздражение кожи, может вызывать аллергическую кожная реакция и может вызвать раздражение дыхательных путей) и «A majority of data submitters agree this substance is Skin sensitizing» (Большинство заявителей на регистрацию согласны с тем, что это вещество вызывает сенсибилизацию кожи[21].

TETRANYL® U – продукт компании Kao Corporation, химическое наименование по INCI: метосульфат ундециленамидопропилтримония, CAS# 94313-91-4. Производителем [компанией КАО] этот продукт определяется как «Hair conditioning agent. It provides smoothness, shine and anti-static properties to the hair, making easy to comb it» (Агент для кондиционирования волос. Придает волосам гладкость, блеск и антистатические свойства, что облегчает их расчесывание[22]. Данное соединение охарактеризовано AOEC (Ассоциация профессиональных и экологических клиник) как «A similar compound is a known human toxicant or allergen» (Подобное соединение является известным токсическим веществом или аллергеном для человека[23]. В рецензируемой публикации сообщается, что соединение может вызывать репродуктивную токсичность у животных [24].

Глицерин, простейший представитель трёхатомных спиртов с формулой C3H5(OH)3, CAS# 56-81-5. Не токсичен, Европейское химическое агентство (ECHA) своем сайте сообщает: «According to the notifications provided by companies toECHA in REACH registrations no hazards have been classified» (Согласно уведомлениям, предоставленным компаниями в ECHA при регистрации REACH, опасности не были классифицированы) и «ECHA has no data from registration dossiers on theprecautionary measures for using this substance» (У ECHA нет данных из регистрационных досье о мерах предосторожности при использовании этого вещества[25].

Глицерин обладает умеренным противомикробным и противовирусным действием и одобрен FDA [26] для лечения ран. Красный Крест сообщает, что 85 % раствор глицерина проявляет бактерицидные и противовирусные эффекты, а в ранах, обработанных глицерином, наблюдается уменьшение воспаления примерно через 2 часа. Благодаря этому он широко используется в продуктах для ухода за ранами, включая гидрогелевые листы для ожогов и другие средства ухода за ранами. Он одобрен для всех видов ухода за ранами, кроме ожогов третьей степени, и используется для упаковки донорской кожи, используемой в кожных трансплантатах [27]. Глицерин используется в медицинских, фармацевтических препаратах и средствах личной гигиены как увлажняющий кожу агент. Глицерин замедляет или предотвращает чрезмерное испарение спирта и воды с кожи, влияя на соотношение воды и спирта, которое, в свою очередь, влияет на антимикробную эффективность используемого средства.

Глицерин является наиболее эффективным увлажнителем по сравнению со многими другими веществами, в том числе a-гидроксикислотами, такими как молочная кислота и гликолевая кислота, гиалуроновая кислота, пропиленгликоль и бутиленгликоль, сорбитол, карбамид [28].


[1] Morton H. E. Alcohols. In: Bloch S. S., editor. Disinfection, sterilization, and preservation. 3rd ed. Philadelphia, Pa: Lea & Febiger; 1983. pp. 225–239

[2] Yasuda-Yasuki Y., Namiki-Kanie S., Hachisaka Y. Inhibition of germination of Bacillus subtilis spores by alcohols. In: Chambliss G., Vary J. C., editors. Spores VII. Washington, D.C: American Society for Microbiology; 1978. pp. 113–116. 

[3] Bush L. E., Benson L. M., White J. H. Pig skin as a test substrate for evaluating topical antimicrobial activity. J. Clin. Microbiol. 1986;24:343–348.

[4] Coulthard C. E., Skyes G. Germicidal effect of alcohol. Pharm. J. 1936;137:79–81.

[5] Klein M., Deforest A. Principles of viral inactivation. In: Block S. S., editor. Disinfection, sterilization and preservation. 3rd ed. Philadelphia, Pa: Lea & Febiger; 1983. pp. 422–434.

[6] Larson E. L., Morton H. E. Alcohols. In: Block S. S., editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 191–203.

[7] Sykes G. The influence of germicides on the dehydrogenases of Bact. coli. 1. The succinic acid dehydrogenase of Bact. coli. J Hyg. 1939;39:463–469.

[8] Dagely S., Dawes E. A., Morrison G. A. Inhibition of growth of Aerobacter aerogenes: the mode of action of phenols, alcohols, acetone and ethyl acetate. J. Bacteriol. 1950;60:369–378.

[9] Man A., A. Ş. Gâz, Mare A. D., Berţa L. Effects of low-molecular weight alcohols on bacterial viability. Revista Română de Medicină de Laborator Vol. 25, Nr. 4, Octombrie, 2017

[10] Frier M. Derivatives of 4-amino-quinaldinium and 8-hydroxyquinoline. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 107–120.

[11] Hugo W. B., Frier M. Mode of action of the antibacterial compound dequalinium acetate. Appl Microbiol. 1969;17:118–127.

[12] Salton M. R. J. Lytic agents, cell permeability and monolayer penetrability. J. Gen. Physiol. 1968;52:277S–252S

[13] Denyer S. P. Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegrad. 1995;36:227–245.

[14] Russell A. D. Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev. 1990;3:99–119.

[15] Russell A. D. Activity of biocides against mycobacteria. J. Appl. Bacteriol., Symp. Suppl. 1996;81:87S–101S.

[16] Gerba C. P. Quaternary Ammonium Biocides: Efficacy in Application. American Society for Microbiology Journals. 2015. Volume 81. Number 2. pp. 464 — 469

[17] Cummings K.J., Kreiss K. Occupational and environmental bronchiolar disorders. Semin. Respir. Crit. Care Med. 2015 Jun;36(3):366-78. Epub 2015 May 29.

[18] Dirk W. Lachenmeier. Chapter 24 – Antiseptic Drugs and Disinfectants // Side Effects of Drugs Annual. — 2015. — Т. 37. — С. 273—279.

[19] https://www.bbc.com/news/world-asia-36185549

[20].http://www.tukes.fi/fi/Ajankohtaista/Tiedotteet/Kemikaalituotevalvonta/Rajoituksia-ja-kieltoja-eraille-desinfioiville-aineille/

[21] https://echa.europa.eu/substance-information/-/substanceinfo/100.218.333

[22] https://www.ulprospector.com/en/la/PersonalCare/Detail/33232/996226/TETRANYL-U

[23] AOEC (Association of Occupational and Environmental Clinics) 2012. Asthmagen compilation — AEOC exposures codes.

[24] Melin V. E., Potineni H., Hunt Patricia, Griswold J., Siems B., Werre S. R. & Hrubec T. C. Exposure to common quaternary ammonium disinfectants decreases fertility in mice. 2014. Reproductive toxicology (Elmsford, N.Y.) 50, 163-170

[25] https://echa.europa.eu/substance-information/-/substanceinfo/100.000.263

[26] https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.1320&SearchTerm=glycerin

[27] Stout Ed. I., McKessor A. Glycerin-Based Hydrogel for Infection Control. Adv Wound Care (New Rochelle). 2012 Feb; 1(1): 48–51.

[28] Sethi A., Kaur T., Malhotra S.K., Gambhir M.L. Moisturizers: The Slippery Road. Indian J. Dermatol. 2016 May-Jun; 61(3): 279–287.

В журнале «Управление финансовыми рисками» опубликована статья А. Полякова «Коммерческий кредит и его особенности применительно к бизнес-практике«. В статье рассматриваются характеристики коммерческого кредита как особой формы краткосрочного финансирования и специфика отношений поставщика и покупателя при использовании такой практики. Предлагается подход к оценке и снижению кредитного риска для поставщика.

Поляков А. Н. Коммерческий кредит и его особенности применительно к бизнес-практике // Управление финансовыми рисками. — 2020. — No4. — С.292–299.

❖❖❖

В статье рассматривается проблема влияния недетерминированных и неопределенных событий на методологию сценарного планирования, используемого при управлении рисками. Автор описывает методы управления рисками на основе интуитивной и обратной логики, показывает основные критерии инкорпорирования в сценарный анализ концепции антихрупкости, предложенной Н. Талебом.

Поляков А. Н. Антихрупкость как элемент методологии менеджмента риска // Управление финансовыми рисками. — 2020. — No3. — С.232–240.

Дезинфицирующие и антисептические средства относятся к специфической группе товаров, эффективность которых не может быть установлена потребителем непосредственно в процессе применения продукции по назначению. С учетом социальных рисков производство и оборот такой продукции должны находиться под особым вниманием как государственных регуляторов, так и соответствующих отраслевых объединений и ассоциаций.

Вспышка острой респираторной вирусной инфекции, вызванная вирусом SARS-Cov-2, выявила серьезные проблемы технического регулирования данной группы товаров на территории Таможенного союза. Так в условиях ажиотажного спроса на дезинфектанты и кожные антисептики начиная с весны 2020 года на рынке появилось множество продуктов, которые не соответствуют требованиям безопасности и целевой эффективности, предъявляемых к дезинфицирующим средствам. Наглядным примером отсутствия надлежащего технического регулирования является ситуация, когда регистрация дезинфицирующих средств для кожных покровов человека выполнялась под требования, установленные в Техническом регламенте Таможенного союза ТР ТС 009/2011 «О безопасности парфюмерно-косметической продукции», хотя этим документом не предусмотрена процедура испытаний целевой эффективности продукции, то есть установление в аккредитованной лаборатории наличия у продукта биоцидного действия (бактерицидного, вирулицидного, фунгицидного и т. п.) и его количественная оценка с выдачей соответствующего научного отчёта и экспертного заключения, и процедура проведения дезинфектологической экспертизы, служащие основанием для выдачи СГР; а также не определены критерии и показатели эффективности для продукции данного класса.

В результате потребитель фактически вводится в заблуждение относительно статуса и свойств продукции, регистрируемой по такой схеме. В такой ситуации следует обратить внимание на опыт стран Европейского Союза и США по регулированию производства и оборота дезинфицирующих средств. 

Европейский Союз

В Европейском Союзе лишь та продукция может рассматривается как косметическая продукция, если маркировка, рекламные и информационные материалы не содержат никаких заявлений о её биоцидных свойствах, таких как: «антибактериальный», «антивирусный», «убивает 99,9 % микробов». Если на упаковке и в рекламе делается какое-либо заявление о биоцидном действии продукта, такой продукт попадает в сферу действия Регламента по биоцидным продуктам (BRP) (ЕС) 528/2012. Регистрация биоцидных продуктов в EC предусматривает две процедуры: требуется оценка и одобрение активного вещества (active substance) и авторизация биоцидных продуктов, содержащих активное вещество или их смесь, которые разделены на 22 типа (product-typePT) в зависимости от области применения.

США

В США противомикробные препараты, предназначенные для использования на различных поверхностях, регулируются Агентством по охране окружающей среды США (US EPA) в соответствии с Федеральным законом об инсектицидах, фунгицидах и родентицидах (Federal Insecticide, Fungicide and Rodenticide Act, FIFRA). FIFRA требует одобрения конкретного продукта посредством процедуры регистрации антимикробных продуктов и их активных ингредиентов. Эффективность дезинфицирующего средства должна быть доказана лабораторными исследованиями, одобренными EPA.  

Противомикробные препараты для использования на людях и животных регулируются другим федеральным агентством – FDA в соответствии с Федеральным законом о пищевых продуктах и ​​косметике (Federal Food Drug and Cosmetics Act, FFDCA) по которому такие продукты считаются лекарственными средствами. Такие антисептические продукты, как дезинфицирующие средства для рук или салфетки для рук, регулируются FDA как безрецептурные лекарственные средства (over-the-counter (OTC) drugs). FDA в рамках своей программы монографий определяет признаны ли активные ингредиенты, используемые в безрецептурных препаратах, как безопасные и эффективные субстанции (generally recognised as safe and effective, Grase). В случаях, когда агентство устанавливает, что ингредиенты состава продукта не являются Grase, требуется регистрация такого продукта как нового лекарственного средства (new drug application, NDA). Соответственно, такие антисептические средства, как любые безрецептурные лекарственные средства, должны изготавливаться в соответствии с требованиями GMP (Надлежащая производственная практика), а производственное предприятие должно быть внесено в список FDA. Зарубежные предприятия, которые производят, переупаковывают или повторно маркируют лекарственные препараты для продажи в США, должны зарегистрироваться в FDA и зарегистрировать свои продукты в агентстве, и обязаны соблюдать требования CGMP (FDA’s current good manufacturing practices). FDA инспектирует предприятия по производству фармацевтической продукции по всему миру, включая предприятия по производству активных ингредиентов и готовой продукции. Если компания не соблюдает правила CGMP, любой препарат, который она производит, по американским законам считается фальсифицированным (adulterated). Хотя FDA формально не может заставить такую компанию отозвать продукцию, компании обычно отзывают её добровольно или по требованию FDA. Если компания всё же отказывается отзывать продукцию, FDA может оповестить общественность и конфисковать продукцию, обратившись в суд для вынесения постановления о конфискации или о судебном запрете при выявлении нарушении требований CGMP, даже если нет прямых доказательств несоответствий продукции, влияющих на эффективность конкретного препарата. Когда FDA возбуждает дело о конфискации, агентство просит суд вынести решение, позволяющее федеральным чиновникам изымать «фальсифицированные» продукты. В случаях когда FDA обращается за вынесением судебного запрета, агентство просит суд приказать компании прекратить нарушать CGMP. Как изъятия продукции, так и судебные запреты обычно приводят к вынесению судебных постановлений, которые требуют от компаний предпринять ряд шагов для исправления нарушений CGMP, которые могут включать ремонт помещений и оборудования, улучшение санитарно-гигиенических условий производства, выполнение дополнительных тестов проверки качества продукции и обеспечения обучения сотрудников. FDA имеет право возбуждать уголовные дела из-за нарушений CGMP, добиваться наложения штрафов и даже лишения свободы виновных лиц при определённых обстоятельствах.

Заключение

Очевидно, что гарантировать эффективность и безопасность дезинфицирующих и антисептических средств путём предъявлений требований только к готовому продукту, а также путем анализа соответствия случайных выборок и образцов из партий (серий) продукции, невозможно, то есть регулирование отрасли должно включать и нормативные требования к производственным практикам предприятий, как это сделано, например, в США. Однако с учётом нынешнего состояния технического регулирования данной продукции на территории Таможенного союза необходимо начать разработку нормативных технических документов, определяющих требования к маркировке, упаковке, правилам приёмки и безопасности дезинфицирующих средств, а также определить критерии эффективности и методы оценки эффективности дезинфицирующих свойств.

Директор СООО «Нобель Групп» Антон Поляков и руководитель отдела продаж Маргарита Петровская приняли участие в конференции «Менять мышление в системах управления с новыми стандартами ISO 9001:2015, ISO 14001:2015, ISO 22000:2018, ISO 31000:2018, ISO 37001:2016, ISO 45001:2018 и ISO 50001:2018”, организованной CERT Academy. Москва, 16 марта 2020 г.

начало https://nobel-group.by/2020/02/19/effektivnost-ispolzovaniya-moyushhih-sredstv-dlya-ochistki-i-dezinfektsii-doilnogo-oborudovaniya-chast-1/

часть 2 https://nobel-group.by/2020/02/21/effektivnost-ispolzovaniya-moyushhih-sredstv-dlya-ochistki-i-dezinfektsii-doilnogo-oborudovaniya-chast-2/

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Эксперимент 1: В этом исследовании увеличение концентрации рабочего раствора нехлорных моющих средств при использовании с холодной водой компенсировало низкую температуру раствора и исключение хлора (таблица 2). Однако программы «холодной» очистки, как правило, имели более широкий разброс результатов для TBC и LPC и не показали сравнимую эффективность на пластиковых поверхностях по отношению к программам, использующим ежедневную горячую очистку. Считается, что эффективность очистки моющих средств возрастает с повышением температуры воды, а более низкая температура моющих растворов может повышать вариабельностью TBC в молоке.

Величина LPC в нефасованном молоке <200 КОЕ/мл считается приемлемой, а показатель LPC равен 10 КОЕ/мл говорит об очень хорошей гигиене оборудования. Все программы очистки, оцененные в этом исследовании, показали средние показатели LPC молока в допустимых пределах при оценке проб как с молокопроводов, так и из ёмкости сбора молока.

Была обнаружена значительная корреляция между местоположением доильного зала и показателем TBC. На всех трех доильных аппаратах было установлено одинаковое доильное оборудование и вспомогательное оборудование. Единственное различие между фермами заключалось в том, что на ферме А было наименьшее количество доильных аппаратов (n = 14) по сравнению с фермой B (n = 20) и фермой C (n = 30). Кроме того, различалась жесткость используемой воды: фермой A имела самый низкий уровень жесткости (56 ppm), за которой следовала ферма B (280 ppm), и затем ферма C, имеющая самый высокий уровень жесткости (468 ppm). Установлено, что жесткость воды влияет на качество очистки оборудования.

Более низкие значения показателей TBC и LPC, наблюдаемые в первой половине дня, по сравнению с вечерней дойкой, могут быть связаны с интервалом доения (17/7 ч), установленным на исследовательских фермах, и последующим влиянием этого интервала на эффективность некоторых моющих средств. Интервал между основным циклом очистки и ополаскиванием в такой ситуации был различным и данный фактор мог оказать влияние на полученные результаты.

Значительное увеличение показателя TBC наблюдалось на пластиковых поверхностях при использовании некоторых процедур очистки. Тем не менее использование горячей воды, присутствие гипохлорита натрия и ежедневная кислотная очистка – процедуры, каждая из которых индивидуально поддерживали низкий уровень TBC на таких поверхностях. Это доказывает тот факт, что ежедневное использование горячей воды или кислотной очистки может обеспечить необходимый уровень гигиены при использовании процедур очистки безхлорными моющими средствами больших доильных залов или на тех фермах, где высокий уровень жесткости воды.

Перекись водорода считается эффективной в окислении клеточного белка и поэтому может рассматриваться как альтернатива гипохлориту натрия в моющих растворах. Может потребоваться регулярное ежедневное использование перекиси водорода, чтобы наблюдать снижение показателя TBC по сравнении с использованием один раз в неделю при применении программ очистки T6 и T7.

Уровни трихлорметана (ТХМ) в пробах молока были удовлетворительными для всех программ очистки с максимумом при использовании гипохлорита натрия. Это указывает на то, что рабочие растворы чистящих средств содержащие 200 ppm гипохлорита натрия (T5), должны использоваться с надлежащей промывкой необходимым количеством воды для ополаскивания. В данном исследовании использовалось количество воды большее, чем то, которое считается достаточным для минимизации остатков моющих средств и обычно используется на фермах.

Результаты исследования показывают, что для очистки доильного оборудования можно рекомендовать использование не содержащих активный хлор моющих средств, в сочетании с ежедневным использованием горячей воды (T4) или кислотной очистки (T3) без каких-либо проблем с качеством как процедуры очистки, так и продукции.

Эксперимент 2. Общее количество бактерий в молоке было ниже при добавлении дезинфицирующего средства в воду для предварительной промывки при автоматизированной мойке. Уровни LPC были особенно низкими до использования PA11 и PA21 (в среднем около 70 КОЕ/мл). Это может объяснить, почему при обработках не наблюдалось значительного снижения LPC, и может указывать на то, что применение дезинфицирующего средства имеет меньшую эффективность в ситуациях, когда оборудование очищено качественно. Дезинфекция и использованием QAC показало пролонгированный эффект (P>0,05). Однако растворы QAC вспенивались во время циркуляции. Можно сделать вывод, что соединения QAC следует использовать на фермах для дезинфекции методом «холодного тумана», использование их в системах CIP представляет сложность из-за пенообразования указанных АДВ. Однако следует отметить, что тестирование проб молока, после обработки с использованием QAC, на наличие остатков TХM показало очень низкие уровни.

Использование гипохлорита натрия приводило к значительному повышению уровня TХM в молоке после применения дезинфицирующего средства при предварительном ополоскании, и аналогичный тест также продемонстрировал повышение уровня TХM при последующем доении при применении NaClO.

Высокие бактериальные числа наблюдались на пластиковых поверхностях. Это может быть может объяснено старением и растрескиванием пластиковых деталей, так как на момент эксперимента они не заменялись несколько лет.

ВЫВОДЫ

Различия уровней TBC и LPC в молоке наблюдались между некоторыми процедурами очистки. Процедуры, которые включали использование ежедневной очистки холодными растворами каустической содой в сочетании с ежедневной очисткой горячими растворами кислотных моющих средств, или горячим раствором моющего щелочного средства и дезинфицирующим средством два раза в день, показывали наименьший уровень TBC в молоке и на пластиковых поверхностях. Все дезинфицирующие средства, применяемые к промывочной воде перед доением, привели к значительному снижению TBC молока при последующем доении. Наименьшее количество бактерий на пластиковых поверхностях наблюдалось при использовании надуксусной кислоты. Надуксусная кислота может быть использована в качестве альтернативы гипохлориту натрия, использование которого приводит к более высоким уровням контаминации молока TХM.

начало https://nobel-group.by/2020/02/19/effektivnost-ispolzovaniya-moyushhih-sredstv-dlya-ochistki-i-dezinfektsii-doilnogo-oborudovaniya-chast-1/

Каждое дезинфицирующее средство применялось в течение 1 недели дважды за период испытаний. В течение каждой недели испытаний первый и второй дни недели использовались в качестве дней контрольных измерения (дезинфицирующий агент не применялся), а в дни 3, 4 и 5 применялась дезинфицирующая обработка. 

РЕЗУЛЬТАТЫ

Эксперимент 1. Семь программ очистки доильных аппаратов с использованием горячих или холодных растворов, содержащих различные уровни гидроксида натрия, с добавлением гипохлорита натрия или перекиси водорода в некоторых программах испытаний (таблица 1), сравнивались по эффективности поддержания низких уровней TBC и LPC в молоке. 

Программа очистки 3 (P3-mipCIP, использован холодным раствор и горячий (70 °C) раствор) с кислотной промывкой, заменяющей моющее средство во второй половине дня, показала значительно более низкие уровни TBC (1040 КОЕ/мл), чем T1 (продукт P3-mipCIP, использован холодным) (1920 КОЕ/мл) (P<0,05) и T4 (Hypral SP использован горячий (70 °C) раствор)(1720 КОЕ/мл) (P<0,07), и более низкие уровни, чем полученные при использовании других программ очистки (Таблица 2). Выявлены значительные различия значений LPC между программами очистки T1 (14 КОЕ/мл), T3 (12 КОЕ/мл) и T6 (Multisan CF, использован холодный раствор)(11 КОЕ/мл) по сравнению с T4 (44 КОЕ/мл ) и T7 (Parlorsan NC, использован холодный раствор) (44 КОЕ/мл) (P<0,05). Контрольная программа очистки (T5) (Liquid Gold, используется горячий (70 °C)  раствор), содержавшая смесь гидроксида натрия и гипохлорит натрия, показала незначительные отличия TBC и LPC от всех других программ очистки. Однако диапазон полученных значений LPC был больше при некоторых программах «холодной» очистки [T1 (0–2700 КОЕ/мл); T6 (0–2600 КОЕ/мл)] по сравнению с программами очистки с использованием горячих растворов [T2 (P3-mipCIP, используется горячие растворы) (0–790 КОЕ/мл); T3 (0–360 КОЕ/мл); T5 (0–610 КОЕ/мл)]. Самые низкие значения TBC были при ежедневной горячей очистке для T3 (3500 КОЕ/мл) и T5 (4300 КОЕ/мл) в сравнении с T1 (6700 КОЕ/мл); T6 (6300 КОЕ/мл) и T7 (9400 КОЕ/мл). Не было никаких существенных различий TBC между программами очистки (P>0,05) для проб из молочного танка. Однако контрольная программа очистки (T5) имела численно самый низкое значение TBC (4280 КОЕ/мл), за которым следовали программы T4 (6600 КОЕ / мл) и T3 (6760 КОЕ / мл), а системы холодной очистки имели самые высокие показатели TBC из проб, взятых в молочном танке: Т1 (9160 КОЕ/мл) и Т6 (9200 КОЕ/мл). Программа очистки, включавшая ежедневную кислотную очистку (T3), имела значительно более низкий показатель LPC по сравнению с Т1, Т4, Т6 и Т7 (Р<0,05). Время обора проб молока показало значительную корреляцию как на показатель TBC, так и на показатель LPC: пробы, взятые при утренней дойке имели более низкий TBC (1450 КОЕ / мл), чем пробы, взятые при вечернем доении (1680 КОЕ/мл) (P<0,01). Точно так же время отбора проб оказывало влияние на значения LPC: 39 КОЕ/мл вечером в сравнении с 14 КОЕ/мл утром (P<0,001).

Наблюдалась значительная корреляция (P <0,05) между местоположением доильного помещения и TBC, при этом ферма A имела более низкий TBC (1170 КОЕ / мл), чем ферма B (1660 КОЕ / мл) или C (1950 КОЕ / мл).

Значительное увеличение значения TBC наблюдалось на пластиковых поверхностях между 1 и 3 неделями при использовании программ очистки T1, T2, T6 и T7 (P<0,05), но различия для программ очистки T3, T4 и T5 были не существенными (таблица 3). Общее количество бактерий не увеличилось значительно на прокладках (диапазон от 100 до 140 КОЕ/мл) и на поверхностях из нержавеющей стали (диапазоне от 100 до 260 КОЕ/мл). 

Эксперимент 2: Определялись средние значения TBC и LPC молока после обработки воды, применяемой для предварительного ополаскивания, дезинфицирующими агентами, указанными в Таблице 4. Существенные различия значений TBC и LPC проб молока, отобранных вначале и после трёх доек, не обнаружены.

Наиболее низкие значения TBC наблюдались в образцах молока с молочной линии после применения всех четырех дезинфицирующих агентов использованных в воде для предварительного промывания (P<0,01). Количественное снижение TBC между обработками не было значительным (P>0,05). Обработка PA11 (надуксусная кислота из расчета 0,688 мл/л) привела к увеличению уровня LPC, при использовании PA21 (надуксусная кислота из расчета 1,313 мл/л) и QAC наблюдалось снижение уровня LPC после санации. 

Гипохлорит натрия имел значительно более высокие уровни TХM после санации (P<0,01). Высокая бактериальная обсемененность (в среднем 174 х 103 КОЕ/мл) наблюдались на пластиковых поверхностях до применения всех дезинфицирующих средств. Включение PA11, PA21 или гипохлорита натрия в качестве дезинфицирующего средства в промывную воду значительно снижало показатель TBC на этих пластиковых поверхностях (P<0,01) (Таблица 4).

(окончание следует)

Введение в проблему

И очистка, и дезинфекция являются неотъемлемой частью переработки молока, которые призваны обеспечить высокий уровень санитарно-гигиенических параметров молочной продукции. Большая доля (≈ 60 – 70 %) жидких продуктов, используемых для очистки и дезинфекции оборудования, используемого в технологических процессах молочных производств, содержит гипохлорит натрия. Гипохлорит натрия включается в состав чистящих средства с целью повышения эффективности очистки и удаления отложений белка на поверхностях доильного оборудования. В настоящее время некоторые переработчики молока отдают предпочтение использованию жидких моющих средств (на основе гидроксида натрия или кислоты), которые не содержат хлор. В обзоре процедур очистки доильного оборудования предлагается, что рабочего раствора, который используется горячим, и содержащего 500 ppm гидроксида натрия и 200 ppm достаточно для очистки в течении десятиминутного цикла, после чего такой раствор должен быть утилизирован. Однако, о количестве щелочи, необходимой для очистки при отсутствии в рабочем растворе активного хлора, особенно при использовании холодных растворов, известно значительно меньше. 

Палмер и О’Шия (1973) показали, что использование нехлорированных порошкообразных моющих средств эффективно для очистки с использованием холодной воды, но концентрации гидроксида натрия в этих продуктах (≈ 76 %) намного выше, чем у большинства доступных в настоящее время жидких моющих средств (<27 %). Некоторые дистрибьюторы нехлорированных жидких моющих средств рекомендуют добавлять перекись водорода в моющий раствор для усиления чистящей способности и в качестве альтернативы гипохлориту натрия. Перекись водорода обладает бактерицидной и фунгицидной активностью. Хотя такие продукты проявляют дезинфицирующий эффект при несколько большей экспозиции, особенно при использовании холодной воды, они имеют преимущества перед дезинфицирующими средствами на основе гипохлорита натрия благодаря экологически приемлемым продуктам разложения: кислороду и воде. Регулярное использование кислотного моющего средства в сочетании с использованием щелочного моющего средства компенсируют исключение гипохлорита натрия из процедур очистки. Кислотная очистка считается токсикологически безопасной, а удаление минеральных отложений и дезинфекция оборудования могут быть объединены в один этап.

Добавление дезинфицирующего средства в воду для предварительной промывки в программу очистки оборудования машинного доения может использоваться, если количество микроорганизмов в воде, используемой молокотоварной фермой, превышает установленный гигиенический норматив. Использование гипохлорита натрия в качестве дезинфицирующего средства для уничтожения бактерий, переживших процесс очистки, является стандартной практикой. Потенциальной альтернативной хлорсодержащим дезинфицирующим средствам является надуксусная кислота (CH3CO3H), антимикробный профиль которой подобен гипохлориту натрия. И гипохлорит натрия, и надуксуная кислота эффективны против широкого спектра микроорганизмов, включая споры, дрожжи, плесени и вирусы. Надуксуная кислота в реальности представляет собой стабильную равновесную смесь собственно надуксусной кислоты, перекиси водорода, уксусной кислоты и воды. Такие кислотные продукты считаются наиболее эффективными для дезинфекции поверхностей из нержавеющей стали. 

Другими альтернативным дезинфицирующим агентами являются соединения четвертичного аммония (QAC), которые являются неокисляющими дезинфицирующими соединениями. Соединения четвертичного аммония являются катионными поверхностно-активными веществами. Некоторые из этих соединений (диэтиламмоний хлорид и диметилбензиламмоний хлорид) в настоящее время рассматриваются как альтернатива традиционно используемым для очистки доильного оборудования активно-действующим веществам, таким как, например, гипохлорит натрия. Соединения четвертичного аммония не считаются эффективными против бактериальных спор, но известно, что молекулы QAC «прилипают» к поверхностям из нержавеющей стали и обеспечивают определенную степень пролонгированной активности против роста бактерий. 

Хотя добавление гипохлорита натрия в воду для предварительного промывания может иметь преимущества при дезинфекции внутренних поверхностей доильного оборудования, оно также может привести к образованию трихлорметана (TХM), который загрязняет молоко. При контакте гипохлорита натрия с органическими веществами образуется множество органических соединений хлора, из которых одним из наиболее опасных является TХM, который накапливается в моющем растворе. Если раствор загрязненный TХM не будет полностью удален с поверхностей, контактирующих с молоком, при последнем ополаскивании, молоко, которое при технологических операциях вступит в контакт с такими поверхностями, оно будет контаминировано TХM. Молоко, загрязненное TХM, в свою очередь загрязняет изготавливаемые из него «жирные» молочные продукты. Поскольку TХM связан с жировой фазой в молоке, молочные продукты с высоким содержанием жира, такие как сливочное масло, наиболее подвержены контаминации TХM и могут привести к серьёзным рискам для здоровья потребителя. Кроме того, International Agency for Research on Cancer (Международное агентство по исследованию рака) заявляет, что ТХМ «подозревается как канцероген для человека», и объявило его канцерогеном группы (ICAR (1999) Monographs on the evaluation of carcinogenic risks to humans. In: International Agency for Research on Cancer Supplement 7 73 131–182). Некоторые страны уже ввели или вводят строгие правила в отношении допустимых уровней содержания TХM, разрешенных в сливочном масле.

Чистящие и дезинфицирующие средства для доильного и молочного оборудования, содержащие гипохлорит натрия, считаются одним из основных источников загрязнения молочной продукции ТХМ. Молочные фермы, использующие чистящие средства с высоким содержанием гипохлорита натрия (>8 %), считаются наиболее вероятными источниками контаминации молока ТХМ

Далее будет показано эффективность использования моющих средств, не содержащих хлор, для очистки доильного оборудования, в условиях различных температур, и влияние дополнительных чистящих средств, если программа очистки предусматривает использование перекиси водорода (H2O2) и фосфорной кислоты (H3PO4); а также влияние применения различных дезинфицирующих средств в воде для предварительной промывки, предусмотренных программой очистки оборудования машинного доения, на количество бактерий и химических контаминантов в молоке.

МАТЕРИАЛЫ и МЕТОДЫ

Эксперимент 1: Семь процедур очистки доильных аппаратов, содержащих различные рабочие растворы гидроксида натрия (NaOH), были случайным образом распределены на трехнедельные периоды на доильную установку на трех исследовательских фермах. Общий период испытаний — 9 недель. Три доильных установки [A (14 единиц), B (20 единиц) и C (30 единиц)], конструктивно схожие, содержали электронные счетчики молока, молочный трубопровод, автоматический съём доильных аппаратов и были оснащены автоматическими моечными станциями. Каждая моечная станция была откалибрована под применяемое чистящее средство перед началом испытаний. Торговые названия продуктов, данные о дистрибьюторе, нормы использования, рабочие растворы с указанием количества как гидроксида натрия (NaOH), так и гипохлорита натрия (NaClO), температура воды и дополнительные продукты, добавленные в программы мойки для программ очистки 1–7, приведены в таблице 1. Процедуры очистки и нормы расхода применялись в соответствии с рекомендациями дистрибьюторов, за исключением случаев контрольной очистки (T5 Liquid Gold). В этом случае применялись более низкие нормы использования, но в количествах (800 ppm гидроксида натрия и 200 ppm гипохлорита натрия), которые считались достаточными для достижения удовлетворительной очистки. Гипохлорит натрия добавляли при промывке в процедуре T2 (P3-MIPCIP), а перекись водорода использовали в процедурах T6 (Multisan CF) и T7 (Parlorsan NC) один раз в неделю. Пробы молока (100 мл) отбирали во время доения с молочной линии (с понедельника по пятницу) в течение 1 и 3 недели, используя отводы для проб, соединенные с коленом из нержавеющей стали, установленным перед охладителем. Краны были очищены по стандартной программе очистки доильных аппаратов и, дополнительно, дважды в неделю очищались вручную моющим раствором.

Пробы молока отбирались из накопительных молочных танков, содержащих объемы молока, полученные во время двух доек, три раза в неделю. Дополнительный образец молока (n = 360) был взят для количественного анализа TХM. По три пробы из молочной линии (n = 420) и пробы молока из резервуаров (n = 108) анализировали в трех экземплярах для определения показателя TBC (total plate count) и, в частности, определения устойчивости бактерий к воздействию высоких температур (показатель LPC — laboratory pasteurization count).

Термоустойчивыми микроорганизмами признавали в том числе те микроорганизмы, которые выжили, но не росли при температурах пастеризации (63,5 ± 0,5 °С в течение 35 минут). Определенную часть каждого образца молока помещали на три теста Petrifilm и инкубировали при 32 °C в течение 48 часов для показателя TBC. После инкубации подсчитывали колонии и автоматически рассчитывали количество микроорганизмов на один мл пробы молока с использованием планшет-ридера (Petrifilm™ Plate Reader).

Эксперимент 2: в воду температурой 30 градусов, используемую в процессе предварительной промывки доильных аппаратов, расположенных рядом друг с другом (Dairymaster, Causeway, Co Kerry), были внесены дезинфицирующие средства, после чего определялись показатели TBC, LPC и количество TХM в молоке.

Использовали следующие дезинфицирующие средства: (а) хлор (гипохлорит натрия) (0,313 мл/л промывной воды); (б) РА11 (надуксусная кислота) из расчета 0,688 мл/л; (с) РА21 (надуксусная кислота) из расчета 1,313 мл/л; (d) QAC (четвертичное аммониевое соединение) в количестве 68,75 мл/л.

(продолжение следует)