Хлораты и другие оксихлорные загрязнители в молочной продукции (часть 4)

начало https://nobel-group.by/2020/02/15/hloraty-i-drugie-oksihlornye-zagryazniteli-v-molochnoj-produktsii-chast-1/

часть 2 https://nobel-group.by/2020/02/15/hloraty-i-drugie-oksihlornye-zagryazniteli-v-molochnoj-produktsii-chast-2/

часть 3 https://nobel-group.by/2020/02/15/hloraty-i-drugie-oksihlornye-zagryazniteli-v-molochnoj-produktsii-chast-3/

Воздействие оксихлорных контаминантов на здоровье человека

Использование окислителей в процессах CIP-очистки приводит к появлению разнообразных побочных продуктов, влияние которых связывают с многочисленными последствиями для здоровья. Токсикология хлоратов и других хлорных побочных продуктов является областью возрастающего интереса из-за широкого распространения этих микроконтаминантов в пищевых продуктах.

Главные оксихлорные контаминанты и связанные с ними биологические риски с установленными рекомендациями, основанными на санитарно-гигиенических нормативах (TDI, ADI и ARfD) и нормативное значение MRL, приведены в таблице 1 (данные European Food Safety Authority).

хлорные контаминанты

TDI — tolerable daily intake (допустимое ежедневное потребление)

ADI — acceptable daily intake (допустимая норма суточного потребления)

ARfD — acute reference dose (острая референтная доза)

MRL — maximum residue level (максимальный остаточный уровень)

Окислительный стресс

В кишечнике происходит взаимное превращение хлорита, хлората и хлорида, и было обнаружено, что оно вызывает окислительный стресс в организме. Организм имеет множество антиоксидантных механизмов для защиты своих клеток от этого процесса, в основным является глутатион (GSH) окислительно-восстановительный цикл. Однако, когда окислительный стресс слишком высок, защитный механизм не справляется, и в результате наносится существенный вред клеткам, который затрагивает протеины, липиды и аминокислоты. Кровь особенно чувствительна к окислительному стрессу, в результате его воздействия гемоглобин может быть окислен до метгемоглобина. Таким образом, клеточные мембраны могут подвергаться окислительному сшиванию белка цитоскелета клеток — спектрина и перекисному окислению липидов, приводящему к внутрисосудистому гемолизу.

Метгемоглобин образуется, когда Fe-центр дезоксигемоглобина окисляется от двухвалентного (Fe2+) до трехвалентного (Fe3+) состояния, как показано на рисунке 2, снижая его способность действовать как транспортное средство для переноса кислорода посредством изменения его способности обратимо связываться с кислородом. Это изменение вызывает тканевую гипоксию и метаболический ацидоз. Кроме того, метгемоглобин инициирует механизм воспалительного каскада, стимулируя высвобождение хемокинов интерлейкин-6, интерлейкин-8 и гликопротеина Е-селектина, которые вызывают высвобождение цитокинов и молекул клеточной адгезии, усиливая тем самым воспалительный ответ. Это может привести к острому повреждению почек и почечной недостаточности в случаях хронического воздействия, точный механизм которого еще не был ясно определён.

Метгемоглобин

Младенцы гораздо более чувствительны, чем взрослые, к этой внутриклеточной индукции метгемоглобина. Это связано с относительной разницей редуктазы метгемоглобина в эритроцитах у новорожденных, поскольку эритроциты плода гораздо более чувствительны к восстановителям и потому, что у плода повышенная потребность в кислороде. Большую долю гемоглобина у детей составляет этот фетальный гемоглобин, который более легко окисляется до метгемоглобина, чем взрослый гемоглобин. Кроме того, растущую обеспокоенность вызывает то, что на 95-м процентиле установленное допустимое ежедневное потребление (TDI) для хлората было превышено во всех обследованиях «младенцев» и «малышей» в исследовании 2014 года.

Развитие плода

Исследованиями, проведенными в 2012 году в Италии, установлено, что наличие повышенных уровней хлорита и хлората (> 700 мкг / л) приводит к значительному увеличению факторов риска дефектов мочевыводящих путей, расщелины неба, расщелины позвоночника и дефектов брюшной стенки для плодов матерей, подвергшихся воздействию высоких уровней хлората и хлорита во время беременности. 

Торможение функций щитовидной железы 

Хлорат и его окисленная форма перхлорат (ClO4) ингибируют белок NIS (sodium/iodide symporter), обнаруженный в щитовидной железе и других тканях, который необходим для синтеза гормонов щитовидной железы трийодтиронина (Т3), который регулирует рост и клеточный метаболизм, и тироксина (Т4), который превращается в трийодтиронин в периферической ткани. NIS играет ключевую роль в пути производства этих гормонов посредством транслокации йодида в фолликулярные клетки, которые образуют тиреоглобулин. Белок тиреоглобулин подвергается расщеплению с выделением T3 и T4, в процессе, который регулируется гипофизом.

Химическое действие хлората сходно с действием перхлората, который хорошо известен как токсикант щитовидной железы. Перхлорат является гораздо более сильным ингибитором функций щитовидной железы, чем хлорат, поскольку он обладает более высокой аффинностью поглощения NIS. Перхлорат конкурентно ингибирует поглощение йодида NIS из-за сходства ионного радиуса и заряда, при этом аналогичные результаты получены для ионов близкого размера, таких как тиоцианат.

Хотя подавление гормонов щитовидной железы не является проблемой для большинства взрослых так как у них есть определённый запас накопленных гормонов щитовидной железы, у младенцев таких запасов гормонов щитовидной железы нет. Это означает, что они полностью зависят от ежедневного поступления гормонов щитовидной железы, чтобы удовлетворить потребности своего организма. Любое ингибирование щитовидной железы приведет к снижению уровня Т4 в сыворотке, а острый дефицит приведет к измеримым неврологическим и когнитивным нарушениям. Присутствие хлорных побочных продуктов в продуктах питания, потребляемых группами с дефицитом йода в группе риска, также повышает риск вышеупомянутых последствий для здоровья как в моделях острого, так и хронического воздействия.

(окончание следует)