С согласия автора публикуем главу III из книги А. Н. Полякова «Краткий очерк истории медицинских масок«, посвященную проблеме эффективности использования масок, а также медицинским и социальным проблемам, связанным с их использованием.

Противоэпидемическая маска возникла в контексте эпидемии маньчжурской чумы 1910 – 1911 годов как симукляр «научно обоснованной борьбы» с невидимыми силами экзистенциального риска, имитируя «последний барьер» между человеком и «вирусами-убийцами».

Поляков А. Н.
Краткий очерк истории медицинских масок

– Almaty: nobel group publishing house, 2021. – 57 с., илл.

УДК 614.442

ББК 5г

По просьбе одного из клиентов был проведен анализ соответствия антисептического средства условиям технического задания. Ниже приведена аналитическая часть экспертизы.

В. Анализ состава

Спирты являются эффективными противомикробными средствами, наиболее широко используются этиловый спирт, изопропиловый спирт (изопропанол) и н-пропанол,  который считается предпочтительным в EU [1]. Спирты обладают быстрым антимикробным действием широкого спектра против вегетативных бактерий (включая микобактерии), вирусов и грибов, не обладают спороцидным действием, но ингибируют споруляцию и прорастание спор [2]. Из-за отсутствия спороцидной активности спирты не рекомендуются для стерилизации, но широко используются как для дезинфекции твердых поверхностей, так и для антисептики кожи. Многие спиртовые дезинфектанты содержат незначительные количества других биоцидов, которые остаются на коже после испарения спирта, или вспомогательные вещества (включая смягчающие вещества), которые сокращают время испарения спирта и могут значительно повысить эффективность продукта [3]. Считается, что изопропиловый спирт несколько более эффективен против бактерий [4], а этиловый спирт более эффективен против вирусов [5]. Однако следует отметить, что такие эффекты зависят как от концентрации спирта, так и от тестового микроорганизма, например, изопропиловый спирт обладает более высокими липофильными свойствами, чем этиловый спирт, и менее активен против гидрофильных вирусов (например, полиовируса). Как правило, антимикробная активность спиртов значительно и нелинейно снижается в концентрациях ниже 50 %, поэтому оптимальным является содержание спиртов в составе продукта в диапазоне от 60 до 90 %.

Научного консенсуса о специфическом механизме действия спиртов нет, но, исходя из повышенной эффективности спиртов в присутствии воды, считается, что они вызывают повреждение клеточных мембран и быструю денатурацию белков с нарушением метаболизма и последующий лизис клеток [6], что подтверждается сообщениями исследователей о денатурации дегидрогеназы Escherichia coli [7] и увеличенной лаг-фазе Enterobacter aerogenes, предположительно из-за ингибирования метаболизма, необходимого для быстрого деления клеток [8].

Из научной литературы известно, что н-пропиловый спирт более эффективен, чем изопропиловый спирт (nPA — 3.12 % против iPA — 6.25 %), для уничтожения метициллинрезистентного золотистого стафилококка (MSSA) [9].

Соединения четвертичного аммония (ЧАС), являются наиболее эффективными дезинфицирующими активно-действующими веществами из группы КПАВ [10]. ЧАС используют для множества клинических целей (например, для предоперационной дезинфекции неповрежденной кожи, нанесения на слизистые оболочки и дезинфекции некритических поверхностей). Помимо антимикробных свойств, ЧАС также отлично подходят для очистки и дезодорации твердых поверхностей.

Известно, что ЧАС являются мембранно-активными агентами [11],  преимущественно повреждающими цитоплазматическую мембрану бактерий или плазматическую мембрану грибов. Сэлтон [12] предложил следующую последовательность событий с микроорганизмами, подвергнутыми воздействию катионных агентов: (i) адсорбция и проникновение агента в клеточную стенку; (ii) реакция с цитоплазматической мембраной (липидом или белком) с последующей дезорганизацией мембраны; (iii) утечка внутриклеточного низкомолекулярного материала; (iv) деградация белков и нуклеиновых кислот; и (v) лизис стенок, вызванный автолитическими ферментами. Таким образом, у бактерий происходит потеря структурной организации и целостности цитоплазматической мембраны, а также другие повреждающие эффекты для бактериальной клетки [13]. ЧАС споростатичны; они подавляют рост спор (развитие вегетативной клетки из проросшей споры), но не сами процессы прорастания (развитие от покоя до метаболически активного состояния), хотя и по неизвестному механизму [14]. Аналогичным образом, ЧАС не являются микобактерицидными, но обладают микобактериостатическим действием, хотя фактическое воздействие на микобактерии мало изучено [15].

Хотя в некоторых исследованиях отмечено повышение толерантности к ЧАС, доказательств, подтверждающих развитие устойчивости к ЧАС в настоящее время нет [16].  Использование ЧАС конкретного наименования имеет свои преимущества и недостатки для конкретной ситуации, то есть выбор того или иного ЧАС в составе средства определяется для конкретного патогена, и этот фактор имеет решающее значение. 

Полигексаметиленгуанидина гидрохлорид (CAS# 57028-96-3) является дериватом гуанидина, свойства, эффективность и воздействие которого еще не полностью изучены. В соответствии с Директивой по биоцидным продуктам от 16 февраля 1998 года (Directive 98/8/EC), вещество входящее в этот класс веществ (PHMB), на основании трех исследований, проведенных во время обзора досье BPR, было классифицировано как канцероген Carc. cat. 2 + H351 (подозревается как причина рака), категория 3; R40 (ограниченное доказательство канцерогенности). С данным веществом связано ряд инцидентов, в том числе с летальным исходом в Республике Корея в 2006 – 2011 годах (запрещено к применению в Республике Корея в 2011 году) [17] [18]. В мае 2016 года компания Reckitt Benckiser признала, что её продукты, содержащие ПГМГ, вредны [19].  ПГМГ ранее использовался в виде водного раствора (200 — 5000) ppm для дезинфекции кожи и инструментов. С 1 февраля 2013 года Европейская комиссия запретила использование ПГМГ в странах Европейского Союза во всех его ранее разрешенных областях применения. Европейская комиссия запретила размещение на рынке и использование ПГМГ для всех биоцидных целей [20].

Исходя из химического профиля данного соединения можно утверждать, что ПГМГ не является веществом, улучающим состояние кожи, использование его для таких целей неизвестно. Европейское химическое агентство (ECHA) своем сайте сообщает: «causes skin irritation, may cause an allergic skin reaction and may cause respiratory irritatio» (вызывает раздражение кожи, может вызывать аллергическую кожная реакция и может вызвать раздражение дыхательных путей) и «A majority of data submitters agree this substance is Skin sensitizing» (Большинство заявителей на регистрацию согласны с тем, что это вещество вызывает сенсибилизацию кожи[21].

TETRANYL® U – продукт компании Kao Corporation, химическое наименование по INCI: метосульфат ундециленамидопропилтримония, CAS# 94313-91-4. Производителем [компанией КАО] этот продукт определяется как «Hair conditioning agent. It provides smoothness, shine and anti-static properties to the hair, making easy to comb it» (Агент для кондиционирования волос. Придает волосам гладкость, блеск и антистатические свойства, что облегчает их расчесывание[22]. Данное соединение охарактеризовано AOEC (Ассоциация профессиональных и экологических клиник) как «A similar compound is a known human toxicant or allergen» (Подобное соединение является известным токсическим веществом или аллергеном для человека[23]. В рецензируемой публикации сообщается, что соединение может вызывать репродуктивную токсичность у животных [24].

Глицерин, простейший представитель трёхатомных спиртов с формулой C3H5(OH)3, CAS# 56-81-5. Не токсичен, Европейское химическое агентство (ECHA) своем сайте сообщает: «According to the notifications provided by companies toECHA in REACH registrations no hazards have been classified» (Согласно уведомлениям, предоставленным компаниями в ECHA при регистрации REACH, опасности не были классифицированы) и «ECHA has no data from registration dossiers on theprecautionary measures for using this substance» (У ECHA нет данных из регистрационных досье о мерах предосторожности при использовании этого вещества[25].

Глицерин обладает умеренным противомикробным и противовирусным действием и одобрен FDA [26] для лечения ран. Красный Крест сообщает, что 85 % раствор глицерина проявляет бактерицидные и противовирусные эффекты, а в ранах, обработанных глицерином, наблюдается уменьшение воспаления примерно через 2 часа. Благодаря этому он широко используется в продуктах для ухода за ранами, включая гидрогелевые листы для ожогов и другие средства ухода за ранами. Он одобрен для всех видов ухода за ранами, кроме ожогов третьей степени, и используется для упаковки донорской кожи, используемой в кожных трансплантатах [27]. Глицерин используется в медицинских, фармацевтических препаратах и средствах личной гигиены как увлажняющий кожу агент. Глицерин замедляет или предотвращает чрезмерное испарение спирта и воды с кожи, влияя на соотношение воды и спирта, которое, в свою очередь, влияет на антимикробную эффективность используемого средства.

Глицерин является наиболее эффективным увлажнителем по сравнению со многими другими веществами, в том числе a-гидроксикислотами, такими как молочная кислота и гликолевая кислота, гиалуроновая кислота, пропиленгликоль и бутиленгликоль, сорбитол, карбамид [28].


[1] Morton H. E. Alcohols. In: Bloch S. S., editor. Disinfection, sterilization, and preservation. 3rd ed. Philadelphia, Pa: Lea & Febiger; 1983. pp. 225–239

[2] Yasuda-Yasuki Y., Namiki-Kanie S., Hachisaka Y. Inhibition of germination of Bacillus subtilis spores by alcohols. In: Chambliss G., Vary J. C., editors. Spores VII. Washington, D.C: American Society for Microbiology; 1978. pp. 113–116. 

[3] Bush L. E., Benson L. M., White J. H. Pig skin as a test substrate for evaluating topical antimicrobial activity. J. Clin. Microbiol. 1986;24:343–348.

[4] Coulthard C. E., Skyes G. Germicidal effect of alcohol. Pharm. J. 1936;137:79–81.

[5] Klein M., Deforest A. Principles of viral inactivation. In: Block S. S., editor. Disinfection, sterilization and preservation. 3rd ed. Philadelphia, Pa: Lea & Febiger; 1983. pp. 422–434.

[6] Larson E. L., Morton H. E. Alcohols. In: Block S. S., editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 191–203.

[7] Sykes G. The influence of germicides on the dehydrogenases of Bact. coli. 1. The succinic acid dehydrogenase of Bact. coli. J Hyg. 1939;39:463–469.

[8] Dagely S., Dawes E. A., Morrison G. A. Inhibition of growth of Aerobacter aerogenes: the mode of action of phenols, alcohols, acetone and ethyl acetate. J. Bacteriol. 1950;60:369–378.

[9] Man A., A. Ş. Gâz, Mare A. D., Berţa L. Effects of low-molecular weight alcohols on bacterial viability. Revista Română de Medicină de Laborator Vol. 25, Nr. 4, Octombrie, 2017

[10] Frier M. Derivatives of 4-amino-quinaldinium and 8-hydroxyquinoline. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 107–120.

[11] Hugo W. B., Frier M. Mode of action of the antibacterial compound dequalinium acetate. Appl Microbiol. 1969;17:118–127.

[12] Salton M. R. J. Lytic agents, cell permeability and monolayer penetrability. J. Gen. Physiol. 1968;52:277S–252S

[13] Denyer S. P. Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegrad. 1995;36:227–245.

[14] Russell A. D. Bacterial spores and chemical sporicidal agents. Clin. Microbiol. Rev. 1990;3:99–119.

[15] Russell A. D. Activity of biocides against mycobacteria. J. Appl. Bacteriol., Symp. Suppl. 1996;81:87S–101S.

[16] Gerba C. P. Quaternary Ammonium Biocides: Efficacy in Application. American Society for Microbiology Journals. 2015. Volume 81. Number 2. pp. 464 — 469

[17] Cummings K.J., Kreiss K. Occupational and environmental bronchiolar disorders. Semin. Respir. Crit. Care Med. 2015 Jun;36(3):366-78. Epub 2015 May 29.

[18] Dirk W. Lachenmeier. Chapter 24 – Antiseptic Drugs and Disinfectants // Side Effects of Drugs Annual. — 2015. — Т. 37. — С. 273—279.

[19] https://www.bbc.com/news/world-asia-36185549

[20].http://www.tukes.fi/fi/Ajankohtaista/Tiedotteet/Kemikaalituotevalvonta/Rajoituksia-ja-kieltoja-eraille-desinfioiville-aineille/

[21] https://echa.europa.eu/substance-information/-/substanceinfo/100.218.333

[22] https://www.ulprospector.com/en/la/PersonalCare/Detail/33232/996226/TETRANYL-U

[23] AOEC (Association of Occupational and Environmental Clinics) 2012. Asthmagen compilation — AEOC exposures codes.

[24] Melin V. E., Potineni H., Hunt Patricia, Griswold J., Siems B., Werre S. R. & Hrubec T. C. Exposure to common quaternary ammonium disinfectants decreases fertility in mice. 2014. Reproductive toxicology (Elmsford, N.Y.) 50, 163-170

[25] https://echa.europa.eu/substance-information/-/substanceinfo/100.000.263

[26] https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.1320&SearchTerm=glycerin

[27] Stout Ed. I., McKessor A. Glycerin-Based Hydrogel for Infection Control. Adv Wound Care (New Rochelle). 2012 Feb; 1(1): 48–51.

[28] Sethi A., Kaur T., Malhotra S.K., Gambhir M.L. Moisturizers: The Slippery Road. Indian J. Dermatol. 2016 May-Jun; 61(3): 279–287.

начало https://nobel-group.by/2020/02/19/effektivnost-ispolzovaniya-moyushhih-sredstv-dlya-ochistki-i-dezinfektsii-doilnogo-oborudovaniya-chast-1/

Каждое дезинфицирующее средство применялось в течение 1 недели дважды за период испытаний. В течение каждой недели испытаний первый и второй дни недели использовались в качестве дней контрольных измерения (дезинфицирующий агент не применялся), а в дни 3, 4 и 5 применялась дезинфицирующая обработка. 

РЕЗУЛЬТАТЫ

Эксперимент 1. Семь программ очистки доильных аппаратов с использованием горячих или холодных растворов, содержащих различные уровни гидроксида натрия, с добавлением гипохлорита натрия или перекиси водорода в некоторых программах испытаний (таблица 1), сравнивались по эффективности поддержания низких уровней TBC и LPC в молоке. 

Программа очистки 3 (P3-mipCIP, использован холодным раствор и горячий (70 °C) раствор) с кислотной промывкой, заменяющей моющее средство во второй половине дня, показала значительно более низкие уровни TBC (1040 КОЕ/мл), чем T1 (продукт P3-mipCIP, использован холодным) (1920 КОЕ/мл) (P<0,05) и T4 (Hypral SP использован горячий (70 °C) раствор)(1720 КОЕ/мл) (P<0,07), и более низкие уровни, чем полученные при использовании других программ очистки (Таблица 2). Выявлены значительные различия значений LPC между программами очистки T1 (14 КОЕ/мл), T3 (12 КОЕ/мл) и T6 (Multisan CF, использован холодный раствор)(11 КОЕ/мл) по сравнению с T4 (44 КОЕ/мл ) и T7 (Parlorsan NC, использован холодный раствор) (44 КОЕ/мл) (P<0,05). Контрольная программа очистки (T5) (Liquid Gold, используется горячий (70 °C)  раствор), содержавшая смесь гидроксида натрия и гипохлорит натрия, показала незначительные отличия TBC и LPC от всех других программ очистки. Однако диапазон полученных значений LPC был больше при некоторых программах «холодной» очистки [T1 (0–2700 КОЕ/мл); T6 (0–2600 КОЕ/мл)] по сравнению с программами очистки с использованием горячих растворов [T2 (P3-mipCIP, используется горячие растворы) (0–790 КОЕ/мл); T3 (0–360 КОЕ/мл); T5 (0–610 КОЕ/мл)]. Самые низкие значения TBC были при ежедневной горячей очистке для T3 (3500 КОЕ/мл) и T5 (4300 КОЕ/мл) в сравнении с T1 (6700 КОЕ/мл); T6 (6300 КОЕ/мл) и T7 (9400 КОЕ/мл). Не было никаких существенных различий TBC между программами очистки (P>0,05) для проб из молочного танка. Однако контрольная программа очистки (T5) имела численно самый низкое значение TBC (4280 КОЕ/мл), за которым следовали программы T4 (6600 КОЕ / мл) и T3 (6760 КОЕ / мл), а системы холодной очистки имели самые высокие показатели TBC из проб, взятых в молочном танке: Т1 (9160 КОЕ/мл) и Т6 (9200 КОЕ/мл). Программа очистки, включавшая ежедневную кислотную очистку (T3), имела значительно более низкий показатель LPC по сравнению с Т1, Т4, Т6 и Т7 (Р<0,05). Время обора проб молока показало значительную корреляцию как на показатель TBC, так и на показатель LPC: пробы, взятые при утренней дойке имели более низкий TBC (1450 КОЕ / мл), чем пробы, взятые при вечернем доении (1680 КОЕ/мл) (P<0,01). Точно так же время отбора проб оказывало влияние на значения LPC: 39 КОЕ/мл вечером в сравнении с 14 КОЕ/мл утром (P<0,001).

Наблюдалась значительная корреляция (P <0,05) между местоположением доильного помещения и TBC, при этом ферма A имела более низкий TBC (1170 КОЕ / мл), чем ферма B (1660 КОЕ / мл) или C (1950 КОЕ / мл).

Значительное увеличение значения TBC наблюдалось на пластиковых поверхностях между 1 и 3 неделями при использовании программ очистки T1, T2, T6 и T7 (P<0,05), но различия для программ очистки T3, T4 и T5 были не существенными (таблица 3). Общее количество бактерий не увеличилось значительно на прокладках (диапазон от 100 до 140 КОЕ/мл) и на поверхностях из нержавеющей стали (диапазоне от 100 до 260 КОЕ/мл). 

Эксперимент 2: Определялись средние значения TBC и LPC молока после обработки воды, применяемой для предварительного ополаскивания, дезинфицирующими агентами, указанными в Таблице 4. Существенные различия значений TBC и LPC проб молока, отобранных вначале и после трёх доек, не обнаружены.

Наиболее низкие значения TBC наблюдались в образцах молока с молочной линии после применения всех четырех дезинфицирующих агентов использованных в воде для предварительного промывания (P<0,01). Количественное снижение TBC между обработками не было значительным (P>0,05). Обработка PA11 (надуксусная кислота из расчета 0,688 мл/л) привела к увеличению уровня LPC, при использовании PA21 (надуксусная кислота из расчета 1,313 мл/л) и QAC наблюдалось снижение уровня LPC после санации. 

Гипохлорит натрия имел значительно более высокие уровни TХM после санации (P<0,01). Высокая бактериальная обсемененность (в среднем 174 х 103 КОЕ/мл) наблюдались на пластиковых поверхностях до применения всех дезинфицирующих средств. Включение PA11, PA21 или гипохлорита натрия в качестве дезинфицирующего средства в промывную воду значительно снижало показатель TBC на этих пластиковых поверхностях (P<0,01) (Таблица 4).

(окончание следует)

Средство FORZA Cleaner – одно из самых популярных средств для ручной и механизированной очистки полов, стен и других поверхностей в линейке продуктов, изготавливаемых компанией «Нобель Групп»FORZA Cleaner можно использовать как для очистки сильно загрязненных твердых поверхностей, так и для поддержания их надлежащего гигиенического состояния. Этот концентрированный очиститель уже много лет популярен у крупных торговых сетей Беларуси, Молдовы, России и Украины, для ежедневной очистки полов с большой проходной нагрузкой эксплуатируемых торговых объектов.

С недавнего времени средство FORZA Cleaner стали использовать для очистки полиуретановых полов в цехах одного крупного производственного предприятия… детали и фотографии можно увидеть  по ссылке на сайте detergent.by 

Для удобства пользователей наша компания создала специализированный сайт, посвященной продукции, используемой в HoReCa и в профессиональном клининге. Также на этом сайте будет размещаться информация о моющих и чистящих средствах СООО Нобель Групп, которые могут использоваться в быту.

Добро пожаловать на сайт http://detergent.by/

моющие чистящие

Моющие средства СООО «Нобель Групп» использовались для поддержания надлежащего санитарно-гигиенического состояния различных производственных объектов и технологического оборудования на ОАО «Агрокомбинат «Дзержинский», предприятии производящем 20 % всей выпускаемой в Республике Беларусь продукции из мяса птицы, с 2011 года. Многолетний опыт их использования — гарантия эффективной и качественной очистки для каждого мясо- и птице- перерабатывающего предприятия.

моющие мясо птица

 

средство для очистки клеток вольеров переносок лотковмоющее средство для мест содержания животныхМоющее средство FORZA DEZ c антимикробным эффектом хорошо известно ветеринарам и заводчикам, профессио-нально занимающихся разведением породистых и племенных животных. Теперь это эффективное и безопасное средство доступно каждому любителю домашних животных, которых хочет чтобы его любимцы были здоровы и веселы. Компания «Нобель Групп» представила средство FORZA DEZ в новой удобной упаковке, предназначенной использования в быту всеми любителями животных.  Подробности по ссылке на сайте ЗооСтор.бай

Антимикробную эффективность производных гуанидина рассмотрим на примере полигексаметиленбигуанида, как наиболее исследованного вещества этой группы химических соединений.

Общая информация

Полигексамеленбигуанидин (PHMB) эффективен против различных патогенных микроорганизмов, в том числе таких как бактерии, амебы и одноклеточные грибы. Также все большее число научных сообщений доказывает то, что PHMB обладает активностью против вируса HIV.  Это соединение является температуро- (не разлагается до температуры 200-220 °С) и свето- (в том числе УФ-) стабильным. Достоинством полигексанидов является то, что они в процессе использования не создают хлорированные побочные продукты (CBP) или тригалометаны (THMs), которые обнаруживаются при обработке продуктами на основе хлора. Рекомендуемая доза составляет 20-40 мг/л 20 % раствора PHMB, т.е. 4-8 мг/л активного вещества (US-EPA, 2004, General water treatment). По сравнению с продуктами на основе хлора, PHMB при использовании в рекомендуемых дозах, не раздражает глаза или кожу, токсических эффектов не наблюдалось даже в случаях случайного воздействия, когда дозы достигали от 10 до 14 мг/л активного вещества.

Однако следует заметить, что в соответствии с Директивой по биоцидным продуктам от 16 февраля 1998 года (Directive 98/8/EC, также известной как BPD), PHMB, на основании трех исследований, проведенных во время обзора досье BPD, классифицируется как канцероген Carc. cat. 2 + H351 (подозревается как причина рака), категория 3; R40 (Ограниченное доказательство канцерогенности).

Читать далее